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Abstract The effect of climate variability on maize yield has been the subject of numerous 

studies globally, but very few of these studies have focused on the local scale in Africa. As a 

result, the focus of this work is on creating a vulnerability index that combines sensitivity, 

exposure, and adaptive capacity to assess the degree of vulnerability of Maize yield to climate 

variability in the south-south region of Nigeria in West Africa. The ratio between the actual 

maize yield and the projected yield was used to calculate yield sensitivity. Adaptive capacity 

examines some of the socioeconomic and demographic factors in the study area. A fuzzy 

function was employed to derive the aggregation of the determinants of Adaptive Capacity 

(adult literacy, poverty prevalence, accessibility to the settlements of people, and dependency 

ratio).  Exposure was expressed as the average of the long-term and short-term climatic factors 

(Rainfall and Temperature). Yield sensitivity ranges between 0.471 to 0.698 with moderate to 

high sensitivity observed in almost the entire growing region. Exposure values indicate a very 

high level of climate variability with the North of Edo to the Southeastern and Southwestern 

parts of the State being more exposed. Adaptive capacity is highly variable ranging from 0.174 

to 1. The vulnerability index ranges from 0.393 to 0.698. The result indicates a very high to 

extremely high vulnerability on maize yield across the majority of growing regions in the 

south-south, which is an indication of a probable yield drop due to changing climate. This 

model provides a structure for decision-making and planning on climate variability mitigation 

needs assessment.  

Keywords: Climate Variability; Maize Yield Sensitivity; Exposure Index; Adaptive Capacity; 

Yield Vulnerability. 
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List of Abbreviations 

PAR - Pressure and Release Model 

SSGPZN – South-South Geopolitical Zones of Nigeria 

VUIm – Vulnerability Index of Maize 

SEIm – Sensitivity Index of Maize 

EXPIm – Exposure Index of Maize 

ADCm – Adaptive Capacity of Maize 

 

 

1. INTRODUCTION 

 

In today’s world, the issue of climate variation takes precedence when it comes to 

agricultural matters, most especially in the aspect of crop production. The risk in the 

agricultural sector is on the rise due to the strong link of the industry with food security (Martins 

et al., 2017). With regards to the current trend in climate patterns, researchers have been 

studying the nature of temperature and rainfall patterns but with more emphasis on the national 

scale rather than the regional level (Adenuga et al., 2021; Dong et al., 2020; Hussein & 

Estifanos, 2023; Maxwell et al., 2019). It has been noted that an increase in climate extremes 

(such as droughts and floods) might lead to a decrease in crop productivity (Malhi et al., 2021; 

Martins et al., 2017). Climate variability can cause crop loss and threaten food security (Alemu 

& Mengistu, 2019; Schneider & Asch, 2020). As a result, a change in rainfall patterns may 

cause water stress, which may then lead to a low-quality crop yield (Brito et al., 2019; Igiehon 

et al., 2021). 

In Nigeria, maize crop production began as a subsistence crop but has progressively risen to 

a marketable crop, which serves as a chief raw material in many production companies, 

especially agro-based ones (Iken & Amusa, 2004; Nwokoro et al., 2021). As a result, more 

study has been done on ways to reduce the effect of climate change on crop productivity. The 

research by Shi and Tao (2014), on how climate change and variability affects maize yield 

reported an overall significant effect but a major snag in the research was its failure to capture 

local peculiarities and their resulting vulnerabilities. Consequently, there exists a need to 

explore climate variability and identify potentially vulnerable areas across the South-South 

geopolitical zones in Nigeria. 

The level of vulnerability of a system is determined by its sensitivity, exposure, and adaptive 

capacity response. A crop’s sensitivity is dependent on whether it responds positively or 

negatively to climatic variations (Jägermeyr et al., 2021). In a related study, maize yield 

sensitivity to climate change in China from 1976 to 2016 was investigated and it was noted that 

the yield of maize in China was significantly impacted by temperature increase. The study 

revealed that the yield of Maize was reduced by 5.19 kg 667 m-2 (1.7%) for every 1°C rise in 
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temperature (Wu et al., 2021). The study demonstrates that although precipitation was also 

shown to have a favourable impact, the overall effect was minimal, but the temperature had a 

substantial impact on the increase of maize yield. Ayanlade et al. (2009) also used a Geographic 

Information System (GIS) to evaluate how crop yields responded to inter-annual variability in 

rainfall in the middle belt of Nigeria. Major maize-producing areas in Nigeria were selected 

for the investigation, and rainfall data from the 30 years between 1970 and 2000 were used. 

Using a GIS database, data on the climate and maize yield were mapped, and Arc-View GIS 

Interpolation and other geospatial analysis methods were used to map the impacts of rainfall 

variability on maize production. From the maps created, their findings indicated that inter-

annual rainfall variability was what produced differences in the rate of maize yield. 

Exposure on the other hand can be seen as the rate at which a particular unit of analysis 

responds to climate stress. It may be represented as either long-term changes in climate 

conditions or changes in climate variability, including the magnitude and frequency of extreme 

events” and this is frequently characterised by a combined effect of stressors like drought and 

extremely high temperatures (Chimonyo et al., 2019). In an effort to foresee future agroclimatic 

conditions and their effects on European grasslands, Trnka et al. (2021) demonstrated that by 

2050, the south and west European grasslands may be exposed to heat and drought twice as 

much as they are now, and the area that experiences regular heat and drought will move further 

north. This thus indicates the necessity to create innovative strategies for preserving grassland 

productivity to mitigate the consequences of climate change. The effect of climate change on 

the yield of crops in the Jimma Zone Upper Gilgel Gibe districts of Ethiopia was evaluated and 

forecasted by Sime and Demissie (2022) under two Representative Concentration Pathways 

(RCPs), high (RCP8.5) and medium (RCP4.5). While maize and wheat yields were forecast to 

rise under the RCP8.5 rainfall scenario, teff and sorghum yields were predicted to fall. The 

minimum temperature increased between 0.38 and 1.83 °C under RCP4.5. Overall, their study 

showed that variations in temperature will have a greater influence on crop yield than the 

change in rainfall in the future period of the year 2030–2050. 

In a five-year study conducted in Portharcourt from 2005 to 2009, Ropo and Ibraheem (2017) 

examined the effects of temperature and rainfall (exposure) on the yield of two important crops, 

cassava, and maize. According to the study, temperature had a negative correlation with the 

yield of both cassava and maize, indicating that when temperature drops, both cassava and 

maize yields rise. They emphasised how important minimum temperature is for the 

development of cassava and maize, as well as how rainfall affects both crops' yields only 

somewhat, suggesting that excessive rainfall may reduce agricultural yields. Additionally, crop 

yields' responses to temperatures above a certain point could be detrimental to agricultural 

productivity (dos Santos et al., 2022). Their study suggested that more research be done on 

closely similar crops in the study area along with an additional insight into the main impacts 

of temperature and rainfall on the production of maize and cassava. 

High susceptibility and exposure are typically the results of skewed development processes, 

according to Moulds et al. (2021). They modelled the impact of flood risk management on 
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social inequality. Their model showed that a key factor in lowering social inequality and 

promoting sustainable economic growth is minimising the susceptibility of informal 

communities to catastrophic occurrences like flooding. Floods, droughts, and severe 

temperatures are all hazards associated with the climate, but by themselves, they do not become 

disasters unless they come into contact with a vulnerable scenario. If people are exposed to 

risks and are unable to appropriately foresee, withstand, and recover from them, they become 

vulnerable. Richer households might not be as affected by vulnerability as those in poverty, 

who contribute far more to it. According to the current climate, maize crops in Nigeria are 

thought to be extremely vulnerable to the effects of major climatic events (droughts and floods) 

as well as to possible climate change. A valuable model for comprehending and lowering maize 

production sensitivity to climate disasters is the disaster crunch model as shown in Figure 1. 

This model follows a cause-and-effect approach and can be used to understand the causes of a 

disaster (Mahmood & Hamayon, 2021). The model reveals a progression of vulnerability. It 

starts with underlying social issues that make it difficult to meet people's needs and the 

translation of root causes by dynamic pressure into unsafe conditions. According to the model, 

a crunch is more likely to affect vulnerable communities because of the unsafe environments 

in which they reside. 

 

Figure 1 The Disaster Crunch model (Wisner et al., 2004) 

The Pressure and Release (PAR) Model as shown in Figure 2 is another model that was 

utilised in this study to show how structures and processes acting in space and time shape 

disasters and disasters in the context of this study is adverse climate events. Risk managers 

would have a framework for assessing vulnerability to disasters and minimising it with a 

conceptual model similar to the Pressure and Release (PAR) model created by Wisner et al. 

(2004). According to the PAR model, a disaster happens when there is a collision between two 

opposing forces which is the force that generates the natural hazard and the processes that cause 

the vulnerability. The adoption of this model to further explain the concept of vulnerability in 

this study reflects the understanding that maize yield vulnerability to climate variability is the 
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intersection of two opposed forces: the processes generating vulnerability on the one side, and 

the physical exposure to specific climatic conditions on the other. 

 

Figure 2: The Pressure and Release (PAR) model (Wisner et al., 2004) 

There is general agreement that extreme weather conditions, such as drought, have 

recognised effects on the yield of crops. However, as observed by Kamali et al. (2018), 

quantifying crop drought vulnerability is rather challenging since, in most situations, the 

components of vulnerability are not described in a standardised and spatially comparable 

quantity but must be established on a fine spatial resolution. To address this problem, they 

created a physical crop drought vulnerability indicator through the linkage of the drought 

exposure index (DEI) with the crop sensitivity index (CSI) in sub-Saharan Africa.  The 

difference between precipitation and potential evapotranspiration, as well as the cumulative 

distribution functions fitted to precipitation, were compared. For periods of one, three, six, nine, 

and twelve months, DEIs were estimated. Curves were fitted to CSI and DEI relations using a 

power function, producing various shapes that help to indicate the degree of vulnerability. 

According to the study, the difference between precipitation and potential evapotranspiration 

over timescales of one, three, and six months produced the greatest correlation between CSI 

and DEI. Due to significant water stress, Southern African countries and some areas of the 

Sahelian strip were particularly vulnerable to drought, but in Central African countries, 

vulnerability is related to temperature stresses. Their methodology provides further information 

on ways of assessing various levels of vulnerabilities and their underlying causes. Additionally, 

their methodology can be applicable also in the case of different regions and at various 

geographical scales, including the area under study. 

A system’s adaptive capacity is determined by how well it can respond to climate variability 

and change. Enhancing adaptive capacity is a technique to reduce vulnerabilities and promote 

sustainable development. ADC has been reported to be subject to aspects including affluence, 

literacy, dependency ratio, technology, information, skills, infrastructure, access to resources, 
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management capacities, etc (Dumenu & Takam Tiamgne, 2020). These factors are highly 

connected that a major setback in any one can reduce the overall ability of the system to adapt 

(Jia et al., 2021; Vallury et al., 2022). The capacity to read and write, as well as linguistic 

abilities, considerably improve access to information, which is crucial during disasters. A 

literate populace would be better equipped to demand a more accountable and efficient 

administration since they would be more aware of their civil and political rights. Governments 

are more likely to address vulnerability in areas where such rights exist because they will be 

held responsible for lessening the effects of disasters (Khan & Salman, 2012). Poverty is a 

great determinant of vulnerability (Maganga et al., 2021). In this context, poverty is not 

measured by financial assets but rather by material, as income poverty is inadequate to address 

multiple forms of poverty. Income depicts poverty rates that are higher than reality because not 

all households can transform income into wealth (Moulds et al., 2021). Therefore, a high level 

of poverty may prevent farmers from investing in novel cultivars, drought-resistant maize seeds, 

fertilisers, and other farm inputs, which would lead to a low capacity for adaptation. People 

who live in urban areas are less at risk from climate variability than those who live in rural 

areas because they have better access to resources, such as information and off-farm 

employment opportunities, inputs, and markets for their farm products. This makes it easier for 

them to adapt to the effects of climate variability. More responsibilities will fall on the earning 

members of households with a larger dependency ratio, decreasing their ability to adjust to 

shocks of all kinds, including climatic shocks (Mesfin et al., 2020). Therefore, a comprehensive 

evaluation of the literature on ADC and urban vulnerability as well as the availability of data 

was used to develop the choice of ADC determinants in this study. 

 Abdollahzadeh et al. (2023) investigated the socio-cognitive aspects of Iran's agricultural 

systems' capacity for climate change adaptation. Their study identified some factors that serve 

as a determinant to successful climate change adaptation and such factors include: the 

awareness and viewpoint of an individual to risks associated with climate, the individual’s 

knowledge about climate and related issues, and the physical accessibility of the individual. 

They concluded by emphasizing the need for resilience-building initiatives. Their findings 

could serve as an insight for agricultural authorities to identify the elements and factors that 

should be given priority to reduce the threat that climate change poses to farming systems. 

Maldonado-Méndez et al. (2022) taking a slightly different approach, used theories about social 

capital as an indication for defining and assessing adaptive capacity. They proposed that "social 

capital" provides a lens to examine how social networks and norms co-evolve to produce 

farmers' capacity to adjust in the face of social or climatic incidents.  Networks and trust are 

the most common social capital indicators, which can be seen in a variety of situations. The 

size of a person's social network reflects the strength of their social capital (Choo & Yoon, 

2022). The study by Bedeke (2023) reveals that farmers' perspectives on climate change are 

frequently influenced by their long-term knowledge and experience with extreme weather 

events that can harm their livelihoods, although the effects of climate variability on farmers' 

livelihoods are less clear because farmers are active ‘agents’ and not passive players who are 

limited by the information and resources that are available to them (Cairns et al., 2013). 
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Farmers have evolved coping mechanisms over time to protect themselves from uncertainties 

(Bedeke, 2023). Sesana et al. (2020) noted that to mitigate farmers' vulnerability to present 

climatic changes, they must have access to information as well as enough resources. 

 Efforts towards attaining sustainable economic growth and food security in Africa are 

becoming more jeopardised by the negative consequences of climatic variability. Therefore, 

Derbile et al. (2022) aimed to evaluate the consequences of a climate change adaptation plan 

as well as the sensitivity of some individual crops in Ghana's Upper West Region to climate 

extremes. According to their findings, maize, and rice were the crops that were most susceptible 

to drought. They concluded that Climate Smart Agriculture (CSA) efforts should be promoted 

if rural livelihoods in Ghana and SSA as a whole are to be safeguarded.  

In the southwestern region of Uganda, a study by Epule and New (2019) detailed the 

vulnerability of six important crops, including maize, to fluctuations in growing season 

precipitation at both the national and regional levels. According to their research, maize had 

the second-lowest risk index of any crop at the national level, at 33%, while it had the second-

highest vulnerability index at the regional level, at 90%. This goes on to show that there is a 

huge disparity between what is obtained at the national level and the regional level. Many 

studies which tend to assess crop vulnerability to climate variability focus more on the national 

level but the research by Epule and New (2019) goes on to indicate that more specific studies 

such as those obtained at the regional level may be able to give more detailed information about 

local realities in the field compared to studies at the national scale and thus the essence of this 

study.  

There are actions to mitigate the impact of climate variability on Maize yield and agricultural 

production impacts at different levels, though the major pressing issue is the inadequate 

information on climate variability at the regional and local scale. This has therefore hindered 

decision-making and planning at these levels. As a result, there exists the need to conduct more 

studies on yield vulnerability, especially of maize, and also make data available for utilization 

by stakeholders at different levels, given that fluctuations in precipitation, temperature, poverty, 

and literacy rates could cause a deviation in results at various levels. Therefore, this study 

emphasizes the significance of detailed investigations of key regions to understand the climatic 

trends and patterns to propose sustainable adaptation measures. 

 

2. MATERIALS AND METHODS 

 

2.1 Study Area  

Nigeria is a cosmopolitan nation with 36 states. Based on variables including cultures, ethnic 

mix, and shared history, these states are split into six geo-political zones: North Central, North 

East, North West, South East, South-South, and South West (Chiaka et al., 2022). This study 

is focused on the South-South Geopolitical zones of Nigeria (SSGPZN) (Figure 3), which is 
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one of the six geographically situated zones within the Niger Delta region of the country. 

Nigeria is a nation endowed with significant oil reserves and three states, including Bayelsa, 

Delta, and Rivers, constituted in this study areas, are the primary regions responsible for oil 

production in the Niger Delta. The region offers diverse opportunities, especially in the 

agricultural sector. The Niger Delta region is characterized by its substantial agricultural land, 

freshwater resources, forests, and fauna. The geographical area is home to the world's third-

largest wetlands and Africa's largest mangrove swamps, which provide habitats for a diverse 

range of plant and animal species. The wetlands in question provides a conducive environment 

for the cultivation of various cash crops, including rubber, cocoa, oil palm, and coconut. 

Additionally, they also support the growth of staple food crops such as cassava, yam, and 

plantain (Babatunde, 2020). The geographical area encounters a humid tropical climate, 

distinguished by alternating wet and dry seasons.  Additionally, it comprises a significant 

proportion of Nigeria's population (Ukhurebor & Siloko, 2020). 

 

Figure 3 Map of Nigeria showing the SSGPZN 

  



IDRiM (2023) 13 (2)        ISSN: 2185-8322 

DOI10.5595/001c.91437 

 

9 

 

2.2 Data 

The research design adopted for this study is a correlational design. This method was adopted 

because the research aims to assess relationships among variables, and also involves the 

repeated observations of variables over a length of time. In the context of this study, the 

vulnerability of Maize yield is expressed as a function of yield sensitivity and exposure index, 

adaptive capacity inclusive to determine the extent to which climate variability also impacts 

Maize producers or growers in the system. 

Thus, the Vulnerability Index of maize yield (VUIm) is expressed as the function of:  

a) Sensitivity Index of maize yield to climate change (SEIm)  

b) Exposure Index of maize yield to climate change (EXPIm)  

c) Adaptive capacity (ADCm) of people within the system (the extent to which people 

in the system can absorb shock). 

This is mathematically represented as shown in the equation below 

VUIm = SEIm + EXPIm – ADCm ………………………….(i) 

2.2.1 Maize Yield Sensitivity Index  

Maize yield sensitivity data for Nigeria was sourced from Mendeley Data (Lawal, 2019b) 

covering 2002 to 2010 with a concentration on the region of interest which is the south-south 

Geo-political zones of Nigeria (SSGPZN). 

2.2.2  Exposure Index 

In this framework of the study, factors considered to have an impact on the production of 

maize are temperature and rainfall. These two climatic parameters were used to assess the 

degree to which Maize is impacted by climatic changes and data used for the computation was 

obtained from Mendeley Data (Lawal, 2019a). 

2.2.3 Adaptive Capacity Index 

Adaptive capacity determinants (Stage 1) 

Due to data constraints, this study concentrated on adult literacy, poverty prevalence, 

accessibility to the settlement of people, and dependency ratio as indicators of adaptive 

capacity. Therefore, a comprehensive evaluation of the literature on ADC and urban 

vulnerability as well as the availability of data was used to develop the choice of ADC 

determinants. Poverty prevalence data was obtained from (Tatem et al., 2013), literacy data 

from (Bosco et al., 2017) dependency ratio data from (Lawal, 2017), and accessibility data 

from (Linard et al., 2012). 
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2.3 Methods 

2.3.1 Maize Yield Sensitivity Index 

The data set which consists of Maize yield sensitivity was created following the method 

adopted by (Lawal & Adesope, 2019; Shi & Tao, 2014) which incorporates the detrending 

(multiplicative detrending method) of the yield data. The projected yield for each year was 

determined by detrending (multiplicative detrending method) the yield data. Detrending's main 

goal was to help eliminate non-climatic factors that could lead to distortions, such as 

modifications of crop management techniques, the adoption of new cultivars, etc (Maharjan & 

Joshi, 2013). The projected Maize yield computed after detrending was divided by the actual 

Maize yield for the same period to get the maize sensitivity index value. With the aid of ArcGIS 

Software (ESRI, 2017), the sensitivity raster data sets were merged with the region boundary 

shapefile to produce the raster image for yield sensitivity, and re-sampling was done to 1km 

resolution. The essence of the resampling is to make the cell resolution the same. 

2.3.2 Exposure Index 

Data for the two indices (temperature and rainfall) as obtained from Mendeley Data (Lawal, 

2019a) was computed as described by (Lawal & Adesope, 2019). The growing season for 

maize in the south is from March to August. The average growing season over the long term 

covers the years 1941 to 2015, while the average growing season over the short term covers 

the years 1961 to 2015. Following the computation of the exposure index, which is obtained as 

a ratio of the long-term to the short-term averages, the averages for the specific growing season 

of maize for the region were calculated. The combined exposure index was created by adding 

the two individually calculated indexes. With the ArcGIS Software (ESRI, 2017), a raster map 

was generated using the combined exposure index data by merging the raster data with the 

south-south region shapefile, and resampling was done to a 1km resolution.  

2.3.3 Adaptive Capacity Index 

Standardization and aggregation of the determinants using fuzzy logic (Stage 2) 

The first step called standardization must be done before fuzzy aggregation can take place 

and this entails the standardization of each determinant to a fuzzy membership value of between 

0 and 1. Fuzzy small was employed to standardise the determinants since it provides an 

approximate sense of the determinants' probable range of values. In addition, it also shows how 

ADC would vary across the range (Araya-Muñoz et al., 2016). After standardization, the adult 

literacy range between 0.2 and 1, the poverty prevalence range between 0.285 to 1, the 

accessibility range between 0.192 to 1, and the dependency ratio between 0.801 to 1. After 

assigning the membership values to each determinant, the “GAMMA” function which is one 

of the fuzzy overlay functions in the ArcGIS Software (ESRI, 2017) was used for the process 

of aggregation i.e. to combine the fuzzy membership rasters data to form the ADC index map. 

The GAMMA function tends to be the most suitable in situations where multiple inputs are to 

be taken into consideration unlike Fuzzy “OR” and Fuzzy “AND”. It does not just return the 
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value of a single membership set, nor does it provide more weight to a single variable as Fuzzy 

"SUM" and Fuzzy "PRODUCT" do. The use of the “GAMMA” function is important as the 

assessment of ADC deals with the combination of factors rather than just a single factor. Thus, 

Lewis et al. (2014) as explained by Araya-Muñoz et al. (2016) demonstrate that the "GAMMA" 

function gives the optimal combination of evidence, whereas other overlay approaches 

overemphasised single variables at a given position while underplaying others. 

2.3.4 Vulnerability Index 

Thereafter, the second level of aggregation was done to generate the vulnerability index map 

by integrating the membership rasters (sensitivity and exposure less adaptive capacity) data 

using map algebra which is an ArcGIS software tool. Figure 4 Summarises procedures for 

obtaining the vulnerability Index. 

 

Figure 4 Conceptual Framework for the Standardisation and Aggregation of ADC Determinants 

using Fuzzy Logic 
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3. RESULTS AND DISCUSSION 

 

3.1 Maize Yield Sensitivity  

The Sensitivity Index (SEI) as shown in Figure 5, indicates a wide variation across the region. 

The figure shows maize yield sensitivity patterns across the growing areas between the period 

2002 to 2010. Three classes were defined using Jenk’s classification. With an index ranging 

from 0.471 to 0.698, a mean value of 0.628, and a Standard Deviation (SD) value of 0.094, the 

three classes were named low, medium, and high. The low, medium and high as shown on the 

map legend (Figure 5) indicates the corresponding degrees of Maize yield sensitivity in the 

areas. The low class has a value of 0.471, which occupies about 27% of the total study area. 

This could be found extending from the Northeastern part of Edo State to the Southwestern 

part of Delta State. The medium class has values ranging between 0.471 to 0.576, which 

occupies about 33% of the study area. This could be found extending from the Northwestern 

part of Edo State to the South-eastern part of Delta State. This also covers the North-western 

part of Crossriver. The high class has values ranging between 0.576 to 0.698. This occupies 

about 40% of the total study area, which could be found extending from the South of Edo, 

covering almost the entire part of Delta excluding the North-eastern and North-western parts 

of the State. This extends to Bayelsa, Rivers, Akwa-Ibom, and Cross River, excluding the 

North-western part of Crossriver State. Patches of this could also be seen in Edo State's 

northern region. From Figure 5, it can thus be deduced that most of the growing areas have 

medium to high sensitivities which is an indication of very high to extremely high vulnerability. 

This is in line with a previous study by Epule and New (2019) that sensitivity increases with 

vulnerability, and vulnerability could rise with poor yield, which could then result in hunger 

and food insecurity in the area of focus. Hence the need to determine the pattern of sensitivity 

for mitigation measures to be put in place, as Maize is one of the major food crops in the 

country and also in the area where this study is focused. 

 

3.2 Exposure  

Figure 6 shows the maize yield exposure index patterns across the growing areas between 

1941 to 2015. Using a similar scheme, three classes were defined. The index ranges between 

0.393 to 1 with a mean value of 0.757 and an SD value of 0.208. The three classes were named 

low, medium, and high. The low, medium and high as shown on the map legend (Figure 6) 

indicates the corresponding degrees of Maize yield exposure to climate variability in the areas. 

With the aid of ArcGIS, graduated colour symbology was used to show the quantitative 

difference between mapped features. The classification scheme has three classes, therefore 

three different colour symbols were assigned and this is an effective way of representing the 

differences in the magnitude of the phenomenon as this made it easy to distinguish colour 

variations. 
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Figure 5 Maize yield sensitivity pattern across growing areas in the SSGPZN 

 

 

Figure 6 Pattern of Maize yield exposure across growing areas in the SSGPZN 
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The low class has values ranging between 0.393 to 0.586, which occupies 24% of the total 

study area. This could be found covering the Eastern part of Delta State, extending to the 

Southwestern part of the State. This low-class range was likewise found extending from the 

Southeastern part of Rivers State to the Southeastern and Southwestern parts of Akwa Ibom 

and extending to the Southeastern part of Cross River. The medium class has values ranging 

between 0.586 to 0.807, which occupies 34% of the total study area. This could be found 

extending from the South of Edo to the Northeastern part of Delta. This medium class range 

could also be found in Rivers State, similarly, in the Northeastern part of Cross River and the 

Southwestern part of the State. The high class has values ranging between 0.807 to 1, which 

occupies 42% of the total study area. This could be found spanning from the North of Edo to 

the Southeastern and Southwestern parts of the State. This extends to the Northeastern part of 

Delta. This range could also be found in the Northern and Southern parts of Bayelsa state with 

a small patch in the Northern part of Cross River. 

From Figure 6, it can be deduced that areas with high exposure index (EXPI) show high 

climate variability and vice versa, and a mid-range to high EXPI indicates a very high 

vulnerability in the majority of the growth zones, which could result in low yield. The work of 

the following researchers; (Gupta et al., 2020; Masambaya, 2018; Odekunle et al., 2007; Ropo 

& Ibraheem, 2017; Singhal & Jha, 2021) corresponds to this. Also, Ropo and Ibraheem (2017) 

revealed that temperature harms the yield of both cassava and maize but a temperature rise 

could lead to a corresponding rise in the vulnerability of both crops, thus leading to a reduction 

in crop yield. These results illustrate the crucial function that minimal temperature plays in the 

development of cassava and maize. There is a need for more efforts to be put in place toward 

attaining economic growth and food security in Africa. Masambaya (2018), observed that 

climatic conditions (temperature and rainfall patterns) and extreme weather events have a 

significant impact on the growth and development of crops. The author highlighted that climate 

change worsens the exposure of farmers because this tends to generate new and unknown 

changes in the pattern of rainfall and temperature, including an increased re-occurrence of 

drought and floods. 

3.3 Adaptive Capacity  

Also for Adaptive Capacity, three classes were defined using a similar classification scheme 

and were named low, medium, and high. The low, medium and high as shown on the map 

legend (Figure 7) indicates the corresponding degrees of adaptive capacity responses of Maize 

yield. The index ranges between 0.174 to 1 with a mean of 0.806 and an SD of 0.227. Low 

classes have values ranging between 0.174 to 0.608, which occupies about 25% of the total 

study area. This could be found covering the central part of Edo extending to Rivers with small 

patches in Akwa Ibom and Cross River State. Medium classes have values ranging between 

0.608 to 0.861, which occupies about 35% of the total study area. This could be found 

extending from the North of Edo with traces along the East and West of the State and extending 

towards Bayelsa. Patches of these could also be found in Rivers, Akwa Ibom, and Cross River 

State. The high class has values ranging between 0.861 to 1, which occupies about 40% of the 
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total study area. This could be found covering the Northeastern part of Edo, extending towards 

the Southwest down to Bayelsa with traces in Akwa Ibom and occupying a large part of Cross 

River State.  

Figure 7 shows most of the growing areas in the south-south geopolitical zones having low 

to mid-range ADC thus indicating high to very high vulnerability. Considering the indices used 

to compute for ADC, the low ADC recorded in the central part of Edo extending to Rivers with 

small patches in Akwa Ibom and Cross River state could be a result of factors such as poverty. 

People may be less likely to invest in inputs like fertiliser, high-yielding varieties of drought-

resistant maize, and irrigation infrastructure if they are poor (Epule & New, 2019). Literacy 

level could be a contributor to low ADC as observed in Figure 7. It was reported by Epule and 

New (2019) that a high poverty level oftentimes translates to a low level of literacy, and often 

in this situation, the low ADC could also translate to a lack of good road transport networks 

and technological inputs. Restricted access to financial services could be a contributor to 

reduced production and then the level of adaptation. The pattern of socioeconomic factors 

among people varies and this greatly determines their capacity to cope with climate changes. 

 

Figure 7 Pattern of adaptive capacity of Maize yield across growing areas in the SSGPZN using 

selected socio-economic factors 

3.4 Vulnerability Index  

VUI is a function of the sum of the SEI and EXPI excluding the ADC. Jenk’s classification 

scheme in ArcGIS Software (ESRI, 2017) was used to classify the vulnerability index into 

three classes. The class ranges between 0.393 to 0.698 with a mean of 0.562 and an SD of 

0.092. The three classes were named high, very high, and extremely high following the degree 
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of vulnerability. The high classes range from 0.393 to 0.470, which covers about 27% of the 

total study area. This occupies the Southeastern part of Cross River. The very high classes 

range from 0.470 to 0.586, which covers about 33% of the total study area. This occupies the 

central part of Edo, extending towards the Northeast down to the Southwestern part of the State. 

Similarly, this range could also be found extending towards the Southwestern part of Delta. 

This range could also be found in Akwa Ibom, the central part of Cross River, and towards the 

Northwestern part of the State. The extremely high ranges between 0.586 to 0.698, covering 

about 40% of the total study area. This could be found extending from the South of Edo towards 

the Northeastern part of Delta down to Bayelsa. A patch of this could be found in Rivers, Akwa 

Ibom, and Cross River. 

 

Figure 8 Pattern of Maize yield vulnerability across growing areas in the SSGPZN 

The combination of SEI, EXPI, and less ADC gave the YV. From the combination of the 

indices, most growing areas have very high to extremely high YV which is an indication of the 

high vulnerability of the yield of Maize in the south-south, to climate variability. Also from the 

computation, there is an indication that a low sensitivity and exposure results in a low 

vulnerability as well but this is the opposite for adaptive capacity. This corresponds to a  

previous research carried out by Epule et al. (2021), which indicates that an increase in 

sensitivity and exposure leads to an increase in yield vulnerability and vice versa. 

The result highlighted where varying levels of yield vulnerabilities could be expected in the 

SSGPZN for Maize production. This builds on the findings of Ajetomobi (2016) which shows 
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that a 1 % rise in temperature can vary the yield of maize by 4.8%, and the same goes for 

extreme rainfall which can also cause a 6.33% variability in Maize yield. 

 

4. CONCLUSIONS 

 

Most of the growing areas have a medium to high level of yield sensitivity, which ranges 

from 0.471 to 0.698. This is an indication of a generally high vulnerability. The growing area 

is seen also to have a mid-range to high exposure index value of 0.393 to 1, thus indicating a 

high exposure of Maize to variations in climate. Adaptive capacity value index ranges between 

0.174 to 1. Thus indicating that farmers in the south-south geopolitical zones have low to 

moderately high adaptive capacity, which also indicates a high to very high vulnerability to 

climate variability. The level of yield vulnerability across the study area is also seen to fall 

within 0.393 to 0.698,  which is a high to extremely high range. Thus, it can be said that climate 

variability affects maize yield across the study area. Among all the indices, ADC can be said 

to be the most important. This is because while it is quite impossible to change at the level of 

farmers, the pattern of future climate, it is, however, possible to devise means on how to 

respond and cope with shocks by adopting good adaptation measures. The level at which 

sensitivity and exposure will affect yield and production is largely dependent on good adaptive 

measures. As a result, this model can be used to identify areas that need to mitigate the effects 

of climate change on crop productivity. 
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